iterate method to find roots

This code gives the roots (lambda-values) of eq1 by using iteration.

eq1[n_, β_, λ_] := Hypergeometric1F1[1/4 (2 – λ/β), n + 1, β]
rootslist[n_Integer, k_Integer, β_] :=
Rest @ FoldList[FindRoot[eq1[n, #2, λ] == 0, {λ, #1}][[1, 2]] &
BesselJZero[n, k]^2, Range @ β]
Table[rootslist[n, 1, 30], {n, 0, 4}]

The table contains all the λ-values for each β from 1 to 30. Using this I want to know how to find a table with λβ\frac{\lambda}{\beta} values?

For example, I have produced the following table

{6., 6.63583, 7.64905, 8.97767, 10.5495, 12.2936, 14.1498, 16.0735,
18.0349, 20.0161, 22.0073, 24.0032, 26.0014, 28.0006, 30.0003,
32.0001, 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56.,
58., 60.},

for n=0n=0.

How can I get

{6.1,6.635832,7.649053,8.977674,10.54955,12.29366,14.14987,16.07358,18.03499,20.016110,22.007311,24.003212,26.001413,28.000614,30.000315,32.000116,34.17,36.18,38.19,40.20,42.21,…,60.30}?\{\frac{6.}{1}, \frac{6.63583}{2}, \frac{7.64905}{3}, \frac{8.97767}{4}, \frac{10.5495}{5}, \frac{12.2936}{6}, \frac{14.1498}{7}, \frac{16.0735}{8},\frac{
18.0349}{9}, \frac{20.0161}{10}, \frac{22.0073}{11}, \frac{24.0032}{12}, \frac{26.0014}{13},\frac{ 28.0006}{14}, \frac{30.0003}{15},\frac{
32.0001}{16}, \frac{34.}{17}, \frac{36.}{18}, \frac{38.}{19}, \frac{40.}{20}, \frac{42.}{21}, …, \frac{60.}{30}\}\text{?}

=================

=================

3 Answers
3

=================

Try this one:

Rational@@@Thread[{#, Range[Length[#]]}]&@rootslist[0, 1, 30]

  

 

It worked! but I have one more question. I got a table with this form {{…},[0,1,30]} I keep getting [0,1,30] at the end of the table. Is there any way to get rid of this, [0,1,30]?
– Keith
Apr 29 ’13 at 3:46

  

 

@Keith use Most. Also check again the list its impossible to have such an expression [0,1,30].
– Spawn1701D
Apr 29 ’13 at 4:00

I may be missing a subtlety in your question but if you just want the numeric values:

lst = {6., 6.63583, 7.64905, 8.97767, 10.5495, 12.2936, 14.1498, 16.0735, 18.0349,
20.0161, 22.0073, 24.0032, 26.0014, 28.0006, 30.0003, 32.0001, 34., 36., 38., 40., 42.,
44., 46., 48., 50., 52., 54., 56., 58., 60.};

MapIndexed[#/#2[[1]] &, lst]

{6., 3.31792, 2.54968, 2.24442, 2.1099, 2.04893, 2.0214, 2.00919, 2.00388, 2.00161,
2.00066, 2.00027, 2.00011, 2.00004, 2.00002, 2.00001, 2., 2., 2., 2., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2.}

If you want the visual appearance of fractions you can use Rational as Spawn did:

MapIndexed[Rational[#, #2[[1]]] &, lst]

{6./1, 6.63583/2, 7.64905/3, 8.97767/4, 10.5495/5, 12.2936/6, 14.1498/7, 16.0735/8, \
18.0349/9, 20.0161/10, 22.0073/11, 24.0032/12, 26.0014/13, 28.0006/14, 30.0003/15, \
32.0001/16, 34./17, 36./18, 38./19, 40./20, 42./21, 44./22, 46./23, 48./24, 50./25, \
52./26, 54./27, 56./28, 58./29, 60./30}

If what you want is just formatting your output in the described way, you can use Column/Grid.

MapIndexed[Column[{#1, #2[[1]]},
Alignment -> Center,
Dividers -> {False, {False, True, False}}] &,
{6., 6.63583, 7.64905, 8.97767, 10.5495, 12.2936, 14.1498, 16.0735,
18.0349, 20.0161, 22.0073, 24.0032, 26.0014, 28.0006, 30.0003,
32.0001, 34., 36., 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60.}]