I am unhappy with the following mapping:

ParametricPlot[{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (ColorData[“DarkRainbow”][#3] &),

ImagePadding -> 20,

ImageSize -> 400,

PlotPoints -> 30]

because of the distinct coloring of its left and right part.

I found a certain fix with this:

ParametricPlot[{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (Blend[{Red, Green, Yellow, Blue, LightBlue, Blue,

Yellow, Green, Red}, #3] &),

ImagePadding -> 20,

ImageSize -> 400,

PlotPoints -> 30]

But I really would prefer to use one of the inbuilt gradients to

color my figure according to its polygon size or “mesh density”.

Thanks in advance for your suggestions.

=================

Something like (Hue[#3] &)?

– R. M.♦

Jul 11 ’14 at 16:04

1

ColorFunction -> (ColorData[“DarkRainbow”][Abs[2 #3 – 1]] &)

– Rahul

Jul 11 ’14 at 22:12

Mr. Coward: I don’t particularly care, but could you give a reason for downvoting my question?

– eldo

Jul 11 ’14 at 22:22

If you don’t care then why call them a coward and ask for a reason?

– Rahul

Jul 11 ’14 at 22:26

@RahulNarain – Maybe I’m naive – but what is “witch-hunting for downvoters” ? I spent an hour to find a solution myself (to no avail), and received excellent answers so far.

– eldo

Jul 11 ’14 at 22:47

=================

2 Answers

2

=================

You could do

ParametricPlot[

{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (ColorData[“DarkRainbow”][If[#3 < .5, 1 - #3, #3]] &),
ImagePadding -> 20,

ImageSize -> 400, PlotPoints -> 30]

“small fishes” – but somehow I wasn’t able to catch them 🙂

– eldo

Jul 11 ’14 at 23:00

ParametricPlot[

{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (ColorData[“TemperatureMap”][Abs[2 #3/Pi]] &),

ColorFunctionScaling -> False,

ImagePadding -> 20,

ImageSize -> 400,

PlotPoints -> 30,

Mesh -> Automatic]

ParametricPlot[

{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (ColorData[“TemperatureMap”][1 – Abs[2 #4/Pi]] &),

ColorFunctionScaling -> False,

ImagePadding -> 20,

ImageSize -> 400,

PlotPoints -> 30,

Mesh -> Automatic]

ParametricPlot[

{Re@Sin[u + I v], Im@Sin[u + I v]},

{u, -Pi/2, Pi/2}, {v, -Pi/2, Pi/2},

ColorFunction -> (ColorData[“TemperatureMap”][

1 – ((1 – Abs[2 #3/Pi])^2 + Abs[2 #4/Pi]^2)] &),

ColorFunctionScaling -> False,

ImagePadding -> 20,

ImageSize -> 400,

PlotPoints -> 30,

Mesh -> Automatic]