Since \overline{S}_r(a)\subset \overline{S}_R(b)\subset X\overline{S}_r(a)\subset \overline{S}_R(b)\subset X. Show that r \leq Rr \leq R and \big\| a-b \big\| \leq R-r\big\| a-b \big\| \leq R-r

=================

=================

=================

Since \overline{S}_r(a)\subset \overline{S}_R(b)\subset X\overline{S}_r(a)\subset \overline{S}_R(b)\subset X. Show that r \leq Rr \leq R and \big\| a-b \big\| \leq R-r\big\| a-b \big\| \leq R-r

=================

=================

=================